Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Front Immunol ; 13: 773341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185877

RESUMO

The herpes virus entry mediator (HVEM) is an immune checkpoint molecule regulating immune response, but its role in tissue repair remains unclear. Here, we reported that HVEM deficiency aggravated hepatobiliary damage and compromised liver repair after 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced injury. A similar phenotype was observed in B and T lymphocyte attenuator (BTLA)-deficient mice. These were correlated with impairment of neutrophil accumulation in the liver after injury. The hepatic neutrophil accumulation was regulated by microbial-derived secondary bile acids. HVEM-deficient mice had reduced ability to deconjugate bile acids during DDC-feeding, suggesting a gut microbiota defect. Consistently, both HVEM and BTLA deficiency had dysregulated intestinal IgA responses targeting the gut microbes. These results suggest that the HVEM-BTLA signaling may restrain liver injury by regulating the gut microbiota.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/imunologia , Microbioma Gastrointestinal/imunologia , Receptores Imunológicos/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/toxicidade , Receptores Imunológicos/deficiência , Membro 14 de Receptores do Fator de Necrose Tumoral/deficiência
2.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623322

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.


Assuntos
Complexo CD3/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Imunológicos , Mycobacterium tuberculosis/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores de Reconhecimento de Padrão/imunologia , Fatores de Transcrição STAT/imunologia
3.
Cell Death Dis ; 12(9): 829, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480018

RESUMO

Recent studies indicate that Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) can function as the signal of pattern recognition receptors, which play a pivotal role in the pathogenesis of the autoimmune disease. Systemic lupus erythematosus (SLE) is a classic autoimmune disease. Previous reports mainly focused on the potential role of TLRs in regulating the development of SLE, but little is known about the role of CLRs in the progression of SLE. Our previous studies showed that the inflammation-mediated accumulation of myeloid-derived suppressor cells (MDSCs) including granulocytic (G-MDSCs) and monocytic (M-MDSCs) participated in the pathogenesis of lupus. Mice deficient in Card9 (the downstream molecule of CLRs) were more susceptible to colitis-associated cancer via promoting the expansion of MDSCs. Whether the abnormal activation of CLRs regulates the expansion of MDSCs to participate in the pathogenesis of lupus remains unknown. In the present study, the expressions of CLRs were examined in both SLE patients and mouse models, revealing the expression of Dectin3 was positively correlated with SLEDAI. Dectin3 deficiency retarded the lupus-like disease by regulating the expansion and function of MDSCs. The mechanistic analysis revealed that Dectin3 deficiency promoted FoxO1-mediated apoptosis of MDSCs. Syk-Akt1-mediated nuclear transfer of FoxO1 increased in Dectin3-deficient MDSCs. Notedly, the accumulation of M-MDSCs mainly decreased in Dectin3-/- lupus mice, and the nuclear transfer of FoxO1 negatively correlated with the expression of LOX-1 on M-MDSCs. The silencing of FoxO1 expression in Dectin3-/- mice promoted the expansion of LOX-1+ M-MDSCs in vivo, and LOX-1+ M-MDSCs increased the differentiation of Th17 cells. Both LOX-1 expression on M-MDSCs and Dectin3 expression on MDSCs increased in patients with SLE. These data indicated that increased LOX-1+ M-MDSCs were related to the exacerbation of SLE development and might be potential target cells for the treatment of SLE.


Assuntos
Proteína Forkhead Box O1/metabolismo , Lectinas Tipo C/deficiência , Lúpus Eritematoso Sistêmico/patologia , Monócitos/patologia , Células Supressoras Mieloides/metabolismo , Receptores Imunológicos/deficiência , Receptores Depuradores Classe E/metabolismo , Transferência Adotiva , Adulto , Animais , Apoptose , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Imiquimode , Lectinas Tipo C/metabolismo , Lúpus Eritematoso Sistêmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Receptores Imunológicos/metabolismo , Receptores Depuradores Classe E/deficiência , Quinase Syk/metabolismo , Terpenos
4.
Acta Neuropathol Commun ; 9(1): 150, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503586

RESUMO

Dystrophic neuronal processes harboring neuritic plaque (NP) tau pathology are found in association with Aß plaques in Alzheimer's disease (AD) brain. Microglia are also in proximity to these plaques and microglial gene variants are known risk factors in AD, including loss-of-function variants of TREM2. We have further investigated the role of Aß plaque-associated microglia in 5XFAD mice in which NP tau pathology forms after intracerebral injection of AD brain-derived pathologic tau (AD-tau), focusing on the consequences of reduced TREM2 expression and microglial depletion after treatment with the colony-stimulating factor 1 (CSFR1) inhibitor, PLX3397. Young 5XFAD mice treated with PLX3397 had a large reduction of brain microglia, including cortical plaque-associated microglia, with a significant reduction of Aß plaque burden in the cortex. A corresponding decrease in cortical APP-positive dystrophic processes and NP tau pathology were observed after intracerebral AD-tau injection in the PLX3397-treated 5XFAD mice. Consistent with prior reports, 5XFAD × TREM2-/- mice showed a significant reduction of plaque-associated microglial, whereas 5XFAD × TREM2+/- mice had significantly more plaque-associated microglia than 5XFAD × TREM2-/- mice. Nonetheless, AD-tau injected 5XFAD × TREM2+/- mice showed greatly increased AT8-positive NP tau relative to 5XFAD × TREM2+/+ mice. Expression profiling revealed that 5XFAD × TREM2+/- mice had a disease-associated microglial (DAM) gene expression profile in the brain that was generally intermediate between 5XFAD × TREM2+/+ and 5XFAD × TREM2-/- mice. Microarray analysis revealed significant differences in cortical and hippocampal gene expression between AD-tau injected 5XFAD × TREM2+/- and 5XFAD × TREM2-/- mice, including pathways linked to microglial function. These data suggest there is not a simple correlation between the extent of microglia plaque interaction and plaque-associated neuritic damage. Moreover, the differences in gene expression and microglial phenotype between TREM2+/- and TREM2-/- mice suggest that the former may better model the single copy TREM2 variants associated with AD risk.


Assuntos
Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Placa Amiloide/metabolismo , Receptores Imunológicos/deficiência , Proteínas tau/toxicidade , Animais , Feminino , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Placa Amiloide/induzido quimicamente , Placa Amiloide/genética , Receptores Imunológicos/genética , Proteínas tau/administração & dosagem
5.
Elife ; 102021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34231467

RESUMO

The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among ß cells, yet testing this in vivo in the intact pancreas is challenging. Robo ßKO mice, in which the genes Robo1 and Robo2 are deleted selectively in ß cells, provide a unique model of altered islet spatial architecture without loss of ß cell differentiation or islet damage from diabetes. Combining Robo ßKO mice with intravital microscopy, we show here that Robo ßKO islets have reduced synchronized intra-islet Ca2+ oscillations among ß cells in vivo. We provide evidence that this loss is not due to a ß cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.


Assuntos
Secreção de Insulina/fisiologia , Células Secretoras de Insulina/fisiologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo , Animais , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética
6.
Eur J Immunol ; 51(9): 2218-2224, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268737

RESUMO

Neutrophils play a crucial role in immune defense against and clearance of uropathogenic Escherichia coli (UPEC)-mediated urinary tract infection, the most common bacterial infection in healthy humans. CD300a is an inhibitory receptor that binds phosphatidylserine and phosphatidylethanolamine, presented on the membranes of apoptotic cells. CD300a binding to phosphatidylserine and phosphatidylethanolamine, also known as the "eat me" signal, mediates immune tolerance to dying cells. Here, we demonstrate for the first time that CD300a plays an important role in the neutrophil-mediated immune response to UPEC-induced urinary tract infection. We show that CD300a-deficient neutrophils have impaired phagocytic abilities and despite their increased accumulation at the site of infection, they are unable to reduce bacterial burden in the bladder, which results in significant exacerbation of infection and worse host outcome. Finally, we demonstrate that UPEC's pore forming toxin α-hemolysin induces upregulation of the CD300a ligand on infected bladder epithelial cells, signaling to neutrophils to be cleared.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Neutrófilos/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/imunologia , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/imunologia , Animais , Apoptose/imunologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Feminino , Técnicas de Inativação de Genes , Proteínas Hemolisinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/genética , Fagocitose/imunologia , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Receptores Imunológicos/genética , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/crescimento & desenvolvimento
7.
Biochem Biophys Res Commun ; 565: 72-78, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34098314

RESUMO

A better understanding of cell-intrinsic factors involved in regulating stem cells and cancer cells will help advance stem cell applications and cancer cell treatment. Previously, we showed that leukocyte immunoglobulin-like receptor B2 (LILRB2) and its mouse ortholog, paired immunoglobulin-like receptor B (PIRB), promote blood stem cell and leukemia development. Another unique mouse paralog to PIRB called gp49B1 was also discovered. However, the roles of gp49B1 in hematopoietic stem cells and leukemia development are largely unknown. Here, we found that gp49B1 is expressed on LSK cells of mouse neonatal hematopoietic organs and is positively correlated with c-Kit expression. However, in noncompetitive and competitive repopulation assays, neonatal splenic gp49B1-positive and c-Kit-highly expressed LSK cells exhibited poor engraftment potential and lymphoid lineage bias. Moreover, in a mouse N-Myc-induced precursor B-acute lymphoblastic leukemia (pre-B ALL) model, we found that gp49B1 deficiency or low levels of c-Kit led to a delay in leukemia development. Together, our results suggest that gp49B1 expressed on hematopoietic progenitor cells supports hematopoietic and leukemia development.


Assuntos
Hematopoese/genética , Leucemia de Células B/genética , Glicoproteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-kit/genética , Receptores Imunológicos/genética , Animais , Feminino , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo
8.
J Exp Med ; 218(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34100905

RESUMO

In Alzheimer's disease (AD) models, AD risk variants in the microglial-expressed TREM2 gene decrease Aß plaque-associated microgliosis and increase neuritic dystrophy as well as plaque-associated seeding and spreading of tau aggregates. Whether this Aß-enhanced tau seeding/spreading is due to loss of microglial function or a toxic gain of function in TREM2-deficient microglia is unclear. Depletion of microglia in mice with established brain amyloid has no effect on amyloid but results in less spine and neuronal loss. Microglial repopulation in aged mice improved cognitive and neuronal deficits. In the context of AD pathology, we asked whether microglial removal and repopulation decreased Aß-driven tau seeding and spreading. We show that both TREM2KO and microglial ablation dramatically enhance tau seeding and spreading around plaques. Interestingly, although repopulated microglia clustered around plaques, they had a reduction in disease-associated microglia (DAM) gene expression and elevated tau seeding/spreading. Together, these data suggest that TREM2-dependent activation of the DAM phenotype is essential in delaying Aß-induced pathological tau propagation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Proteínas tau/metabolismo , Animais , Apolipoproteínas E/metabolismo , Homeostase , Macrófagos/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/metabolismo , Camundongos Knockout , Neuritos/metabolismo , Neuritos/patologia , Fenótipo , Placa Amiloide/patologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo
9.
Neurobiol Dis ; 155: 105398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34019997

RESUMO

The role played by microglia has taken the center of the stage in the etiology of Alzheimer's disease (AD). Several genome-wide association studies carried out on large cohorts of patients have indeed revealed a large number of genetic susceptibility factors corresponding to genes involved in neuroinflammation and expressed specifically by microglia in the brain. Among these genes TREM2, a cell surface receptor expressed by microglia, arouses strong interest because its R47H variant confers a risk of developing AD comparable to the ε4 allele of the APOE gene. Since this discovery, a growing number of studies have therefore examined the role played by TREM2 in the evolution of amyloid plaques and neurofibrillary tangles, the two brain lesions characteristic of AD. Many studies report conflicting results, reflecting the complex nature of microglial activation in AD. Here, we investigated the impact of TREM2 deficiency in the THY-Tau22 transgenic line, a well-characterized model of tauopathy. Our study reports an increase in the severity of tauopathy lesions in mice deficient in TREM2 occurring at an advanced stage of the pathology. This exacerbation of pathology was associated with a reduction in microglial activation indicated by typical morphological features and altered expression of specific markers. However, it was not accompanied by any further changes in memory performance. Our longitudinal study confirms that a defect in microglial TREM2 signaling leads to an increase in neuronal tauopathy occurring only at late stages of the disease.


Assuntos
Modelos Animais de Doenças , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Receptores Imunológicos/deficiência , Tauopatias/metabolismo , Antígenos Thy-1/genética , Proteínas tau/genética , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto/fisiologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores Imunológicos/genética , Tauopatias/genética , Tauopatias/patologia
10.
Neurotherapeutics ; 18(3): 1980-1994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33829411

RESUMO

Numerous therapies aimed at driving an effective anti-glioma response have been employed over the last decade; nevertheless, survival outcomes for patients remain dismal. This may be due to the expression of immune-checkpoint ligands such as PD-L1 by glioblastoma (GBM) cells which interact with their respective receptors on tumor-infiltrating effector T cells curtailing the activation of anti-GBM CD8+ T cell-mediated responses. Therefore, a combinatorial regimen to abolish immunosuppression would provide a powerful therapeutic approach against GBM. We developed a peptide ligand (CD200AR-L) that binds an uncharacterized CD200 immune-checkpoint activation receptor (CD200AR). We sought to test the hypothesis that CD200AR-L/CD200AR binding signals via he DAP10&12 pathways through in vitro studies by analyzing transcription, protein, and phosphorylation, and in vivo loss of function studies using inhibitors to select signaling molecules. We report that CD200AR-L/CD200AR binding induces an initial activation of the DAP10&12 pathways followed by a decrease in activity within 30 min, followed by reactivation via a positive feedback loop. Further in vivo studies using DAP10&12KO mice revealed that DAP10, but not DAP12, is required for tumor control. When we combined CD200AR-L with an immune-stimulatory gene therapy, in an intracranial GBM model in vivo, we observed increased median survival, and long-term survivors. These studies are the first to characterize the signaling pathway used by the CD200AR, demonstrating a novel strategy for modulating immune checkpoints for immunotherapy currently being analyzed in a phase I adult trial.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/deficiência , Sequência de Aminoácidos , Animais , Antígenos CD/administração & dosagem , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Feminino , Terapia Genética/métodos , Glioma/tratamento farmacológico , Glioma/genética , Inibidores de Checkpoint Imunológico/administração & dosagem , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Terciária de Proteína , Receptores Imunológicos/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
11.
IUBMB Life ; 73(5): 726-738, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33686787

RESUMO

The importance of the tumor microenvironment in cancer progression has been well studied for many years. Immune checkpoint inhibitors (ICIs) are regarded as potential strategies in enhancing the immune responses in patients with cancer, particularly colorectal cancer (CRC). Notably, CRCs are extraordinarily heterogeneous and mostly are microsatellite-stable (MSS) or cold tumors, which means that the immune response is not usually as strong as that of foreign cells. T-cell immunoglobulin and ITIM domain (TIGIT) is a new immune checkpoint receptor overexpressed inside the CRC tumor-immune microenvironments. Moreover, several studies have shown that TIGIT in combination with other ICIs and/or conventional treatments, can lead to a robust anti-tumor response in CRC. This review looks deep inside TIGIT expression patterns, their various functions, and possible immunotherapy strategies to increase survival rates and decrease immune-related adverse events.


Assuntos
Adenocarcinoma/terapia , Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico , Proteínas de Checkpoint Imunológico/imunologia , Imunoterapia/métodos , Receptores Imunológicos/antagonistas & inibidores , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Motivos de Aminoácidos , Animais , Antígenos CD/imunologia , Sistemas CRISPR-Cas , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Terapia Combinada , Microbioma Gastrointestinal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Prognóstico , Domínios Proteicos , Receptores Imunológicos/biossíntese , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Microambiente Tumoral
12.
Mol Cell Endocrinol ; 525: 111178, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33556472

RESUMO

PURPOSE: Endogenously produced glucocorticoids exhibit immunomodulating properties and are of pivotal importance for sepsis outcome. Uncontrolled activation of the immune-adrenal crosstalk increases the risk of sepsis-related death. Triggering receptor expressed on myeloid cells-2 (TREM2) is richly expressed on macrophages and has been demonstrated to improve outcome of sepsis by enhancing elimination of pathogens. However, the role and mode of action of macrophage TREM2 on adrenocortical steroidogenesis remains unclear in septic shock. METHODS: The acute septic shock model was established by intraperitoneally challenging wild-type (WT) and TREM2 knock-out (Trem2-/-) mice with lipopolysaccharide (LPS, 30 mg/kg). The mice were assessed for TREM2 expression and local inflammation in adrenal gland and for synthesis of corticotropin releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) in vivo. Bone marrow-derived macrophages or macrophage-derived exosomes were isolated from WT and Trem2-/- mice and were co-cultured with adrenocortical cells. The expression of steroidogenic enzymes and corticosterone production was assessed. RESULTS: Genetic deficiency of TREM2 caused significantly higher corticosterone levels at the early stage of LPS-induced septic shock; whereas TREM2 deficiency neither increased CRH and ACTH nor exacerbated the inflammation in adrenocortical tissue during septic shock. Ex vivo study revealed that Trem2-/- macrophages significantly promoted the expression of steroidogenic enzymes and increased production of corticosterone. Furthermore, Trem2-/- macrophage-derived exosomes were able to mimic Trem2-/- macrophages in enhancing adrenocortical steroidogenesis. CONCLUSIONS: At the early stage of LPS-induced septic shock, corticosterone biosynthesis can be inhibited by macrophage TREM2 in adrenocortical cells, which might partially associate with macrophage-derived exosomes.


Assuntos
Córtex Suprarrenal/patologia , Exossomos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Choque Séptico/metabolismo , Esteroides/biossíntese , Hormônio Adrenocorticotrópico/metabolismo , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/metabolismo , Inflamação/patologia , Ácido Láctico/sangue , Lipopolissacarídeos , Glicoproteínas de Membrana/deficiência , Camundongos Endogâmicos C57BL , Receptores Imunológicos/deficiência , Análise de Sobrevida
13.
Nat Commun ; 12(1): 94, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397982

RESUMO

TARM1 is a member of the leukocyte immunoglobulin-like receptor family and stimulates macrophages and neutrophils in vitro by associating with FcRγ. However, the function of this molecule in the regulation of the immune system is unclear. Here, we show that Tarm1 expression is elevated in the joints of rheumatoid arthritis mouse models, and the development of collagen-induced arthritis (CIA) is suppressed in Tarm1-/- mice. T cell priming against type 2 collagen is suppressed in Tarm1-/- mice and antigen-presenting ability of GM-CSF-induced dendritic cells (GM-DCs) from Tarm1-/- mouse bone marrow cells is impaired. We show that type 2 collagen is a functional ligand for TARM1 on GM-DCs and promotes DC maturation. Furthermore, soluble TARM1-Fc and TARM1-Flag inhibit DC maturation and administration of TARM1-Fc blocks the progression of CIA in mice. These results indicate that TARM1 is an important stimulating factor of dendritic cell maturation and could be a good target for the treatment of autoimmune diseases.


Assuntos
Artrite Experimental/metabolismo , Artrite Experimental/patologia , Colágeno/metabolismo , Células Dendríticas/patologia , Receptores Imunológicos/metabolismo , Animais , Apresentação de Antígeno , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Imunização , Ligantes , Camundongos Endogâmicos C57BL , Receptores Imunológicos/deficiência
14.
Circulation ; 143(8): 821-836, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33297741

RESUMO

BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the ß-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.


Assuntos
Apresentação Cruzada , Células Dendríticas/imunologia , Miocárdio/patologia , Animais , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Feminino , Insuficiência Cardíaca/patologia , Humanos , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética
15.
J Neuroinflammation ; 17(1): 351, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33222683

RESUMO

BACKGROUND: Air pollution has been linked to neurodegenerative diseases, including Alzheimer's disease (AD), and the underlying neuroimmune mechanisms remain poorly understood. TREM2 is a myeloid cell membrane receptor that is a key regulator of disease-associated microglia (DAM) cells, where loss-of-function TREM2 mutations are associated with an increased risk of AD. At present, the basic function of TREM2 in neuroinflammation is a point of controversy. Further, the impact of air pollution on TREM2 and the DAM phenotype is largely unknown. Using diesel exhaust (DE) as a model of urban air pollution exposure, we sought to address its impact on TREM2 expression, the DAM phenotype, the association of microglia with the neurovasculature, and the role of TREM2 in DE-induced neuroinflammation. METHODS: WYK rats were exposed for 4 weeks to DE (0, 50, 150, 500 µg/m3) by inhalation. DE particles (DEP) were administered intratracheally once (600 µg/mouse) or 8 times (100 µg/mouse) across 28 days to male mice (Trem2+/+, Trem2-/-, PHOX+/+, and PHOX-/-). RESULTS: Rats exposed to DE exhibited inverted-U patterns of Trem2 mRNA expression in the hippocampus and frontal cortex, while TREM2 protein was globally diminished, indicating impaired TREM2 expression. Analysis of DAM markers Cx3Cr1, Lyz2, and Lpl in the frontal cortex and hippocampus showed inverted-U patterns of expression as well, supporting dysregulation of the DAM phenotype. Further, microglial-vessel association decreased with DE inhalation in a dose-dependent manner. Mechanistically, intratracheal administration of DEP increased Tnf (TNFα), Ncf1 (p47PHOX), and Ncf2 (p67PHOX) mRNA expression in only Trem2+/+ mice, where Il1b (IL-1ß) expression was elevated in only Trem2-/- mice, emphasizing an important role for TREM2 in DEP-induced neuroinflammation. CONCLUSIONS: Collectively, these findings reveal a novel role for TREM2 in how air pollution regulates neuroinflammation and provides much needed insight into the potential mechanisms linking urban air pollution to AD.


Assuntos
Poluição do Ar/efeitos adversos , Mediadores da Inflamação/metabolismo , Glicoproteínas de Membrana/biossíntese , Receptores Imunológicos/biossíntese , Emissões de Veículos/toxicidade , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ratos , Ratos Endogâmicos WKY , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética
16.
Front Immunol ; 11: 2188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072082

RESUMO

The understanding of protective immunity during HIV infection remains elusive. Here we showed that CD160 defines a polyfunctional and proliferative CD8+ T cell subset with a protective role during chronic HIV-1 infection. CD160+ CD8+ T cells derived from HIV+ patients correlated with slow progressions both in a cross-sectional study and in a 60-month longitudinal cohort, displaying enhanced cytotoxicity and proliferative capacity in response to HIV Gag stimulation; triggering CD160 promoted their functionalities through MEK-ERK and PI3K-AKT pathways. These observations were corroborated by studying chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. The genetic ablation of CD160 severely impaired LCMV-specific CD8+ T cell functionalities and thereby resulted in loss of virus control. Interestingly, transcriptional profiling showed multiple costimulatory and survival pathways likely to be involved in CD160+ T cell development. Our data demonstrated that CD160 acts as a costimulatory molecule positively regulating CD8+ T cells during chronic viral infections, thus representing a potential target for immune intervention.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Infecções por HIV/imunologia , Coriomeningite Linfocítica/imunologia , Receptores Imunológicos/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Doença Crônica , Progressão da Doença , Feminino , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/imunologia , Produtos do Gene gag/fisiologia , HIV-1 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores Imunológicos/deficiência , Subpopulações de Linfócitos T/transplante , Transcriptoma
17.
Cell ; 182(4): 886-900.e17, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783918

RESUMO

Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.


Assuntos
Imunoterapia , Glicoproteínas de Membrana/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Metilcolantreno/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/induzido quimicamente , Neoplasias/patologia , Prognóstico , Receptor de Morte Celular Programada 1/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Microambiente Tumoral
18.
Prostate ; 80(13): 1045-1057, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687658

RESUMO

BACKGROUND: There is a need to develop novel therapies which could be beneficial to patients with prostate cancer (CaP) including those who are predisposed to poor outcome, such as African-Americans. This study investigates the role of ROBO1-pathway in predicting outcome and race-based disparity in patients with CaP. METHODS AND RESULTS: Aided by RNA sequencing-based DECIPHER-testing and immunohistochemical (IHC) analysis of tumors we show that ROBO1 is lost during the progressive stages of CaP, a prevalent feature in African-Americans. We show that the loss of ROBO1 predicts high-risk of recurrence, metastasis and poor outcome of androgen-deprivation therapy in radical prostatectomy-treated patients. These data identified an aggressive ROBO1deficient /DOCK1+ve sub-class of CaP. Combined genetic and IHC data showed that ROBO1 loss is accompanied by DOCK1/Rac1 elevation in grade-III/IV primary-tumors and Mets. We observed that the hypermethylation of ROBO1-promoter contributes to loss of expression that is highly prevalent in African-Americans. Because of limitations in restoring ROBO1 function, we asked if targeting the DOCK1 could be an ideal strategy to inhibit progression or treat ROBO1deficient metastatic-CaP. We tested the pharmacological efficacy of CPYPP, a selective inhibitor of DOCK1 under in vitro and in vivo conditions. Using ROBO1-ve and ROBO1+ve CaP models, we determined the median effective concentration of CPYPP for growth. DOCK1-inhibitor treatment significantly decreased the (a) Rac1-GTP/ß-catenin activity, (b) transmigration of ROBO1deficient cells across endothelial lining, and (c) metastatic spread of ROBO1deficient cells through the vasculature of transgenicfl Zebrafish model. CONCLUSION: We suggest that ROBO1 status forms as predictive biomarker of outcome in high-risk populations such as African-Americans and DOCK1-targeting therapy has a clinical potential for treating metastatic-CaP.


Assuntos
Negro ou Afro-Americano/genética , Proteínas do Tecido Nervoso/genética , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/genética , Receptores Imunológicos/genética , Proteínas rac de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA , Disparidades nos Níveis de Saúde , Humanos , Imuno-Histoquímica , Masculino , Metástase Neoplásica , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/deficiência , Regiões Promotoras Genéticas , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Receptores Imunológicos/biossíntese , Receptores Imunológicos/deficiência , População Branca/genética , Peixe-Zebra , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Mol Neurodegener ; 15(1): 41, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703241

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is a neurodegenerative disorder influenced by aging and genetic risk factors. The inheritance of APOEε4 and variants of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) are major genetic risk factors for AD. Recent studies showed that APOE binds to TREM2, thus raising the possibility of an APOE-TREM2 interaction that can modulate AD pathology. METHODS: The aim of this study was to investigate this interaction using complex AD model mice - a crossbreed of Trem2ko and APP/PSEN1dE9 mice expressing human APOE3 or APOE4 isoforms (APP/E3 and APP/E4 respectively), and their WT littermates (E3 and E4), and evaluate cognition, steady-state amyloid load, plaque compaction, plaque growth rate, glial response, and brain transcriptome. RESULTS: In both, APP/E3 and APP/E4 mice, Trem2 deletion reduced plaque compaction but did not significantly affect steady-state plaque load. Importantly, the lack of TREM2 increased plaque growth that negatively correlated to the diminished microglia barrier, an effect most pronounced at earlier stages of amyloid deposition. We also found that Trem2 deficiency significantly decreased plaque-associated APOE protein in APP/E4 but not in APP/E3 mice in agreement with RNA-seq data. Interestingly, we observed a significant decrease of Apoe mRNA expression in plaque-associated microglia of APP/E4/Trem2ko vs APP/E4 mice. The absence of TREM2, worsened cognitive performance in APP transgenic mice but not their WT littermates. Gene expression analysis identified Trem2 signature - a cluster of highly connected immune response genes, commonly downregulated as a result of Trem2 deletion in all genotypes including APP and WT littermates. Furthermore, we identified sets of genes that were affected in TREM2- and APOE isoform-dependent manner. Among them were Clec7a and Csf1r upregulated in APP/E4 vs APP/E3 mice, a result further validated by in situ hybridization analysis. In contrast, Tyrobp and several genes involved in the C1Q complement cascade had a higher expression level in APP/E3 versus their APP/E4 counterparts. CONCLUSIONS: Our data demonstrate that lack of Trem2 differentially impacts the phenotype and brain transcriptome of APP mice expressing human APOE isoforms. The changes probably reflect the different effect of APOE isoforms on amyloid deposition.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Glicoproteínas de Membrana/deficiência , Receptores Imunológicos/deficiência , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Placa Amiloide/patologia
20.
Am J Pathol ; 190(4): 799-816, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220420

RESUMO

Roundabout guidance receptor 2 (ROBO2) plays an important role during early kidney development. ROBO2 is expressed in podocytes, inhibits nephrin-induced actin polymerization, down-regulates nonmuscle myosin IIA activity, and destabilizes kidney podocyte adhesion. However, the role of ROBO2 during kidney injury, particularly in mature podocytes, is not known. Herein, we report that loss of ROBO2 in podocytes [Robo2 conditional knockout (cKO) mouse] is protective from glomerular injuries. Ultrastructural analysis reveals that Robo2 cKO mice display less foot process effacement and better-preserved slit-diaphragm density compared with wild-type littermates injured by either protamine sulfate or nephrotoxic serum (NTS). The Robo2 cKO mice also develop less proteinuria after NTS injury. Further studies reveal that ROBO2 expression in podocytes is up-regulated after glomerular injury because its expression levels are higher in the glomeruli of NTS injured mice and passive Heymann membranous nephropathy rats. Moreover, the amount of ROBO2 in the glomeruli is also elevated in patients with membranous nephropathy. Finally, overexpression of ROBO2 in cultured mouse podocytes compromises cell adhesion. Taken together, these findings suggest that kidney injury increases glomerular ROBO2 expression that might compromise podocyte adhesion and, thus, loss of Robo2 in podocytes could protect from glomerular injury by enhancing podocyte adhesion that helps maintain foot process structure. Our findings also suggest that ROBO2 is a therapeutic target for podocyte injury and podocytopathy.


Assuntos
Nefropatias/prevenção & controle , Glomérulos Renais/citologia , Podócitos/citologia , Substâncias Protetoras/metabolismo , Receptores Imunológicos/deficiência , Adulto , Animais , Feminino , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Podócitos/metabolismo , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/prevenção & controle , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...